array of LEDs **434** are coupled at one end of the diffuser and a reflective back surface **438** is designed to evenly distribute light as it is directed through the interface.

[0168] An enlarged top view of a diffuser and light pipe system 450 for backlight illumination of a display is illustrated in FIG. 7D. The light source 452 such as three light emitting diodes is coupled to an expanding light pipe 454. The light pipe 454 directs the light into the side of a reflecting element or diffuser 458, as illustrated in FIG. 7E. A BEF film referenced above can be used between the light pipe 454 and element and reflective element 458. The sides and bottoms of the elements can be beveled at 456 to further reduce the volume occupied by this portion of the optical system. A reflective surface or mirror 464 serves to reflect light towards diffuser 462 and through the display 460.

[0169] In another embodiment of an LED display illumination system 1420 as shown in FIG. 7F, the display 1422 is coupled to an angled diffuser 1426 at interface 1430. The linear array of LEDs are inserted into slot 1424 to couple light into one end of the diffuser and a reflective back surface 1428 is designed to evenly distribute light as it is directed through the interface. The increase thickness and shortness of the body of the angled diffuser 1426 increases the coupling efficiency of the element 1426 to display and thus increases the foot-lamberts (fL) of light produced per amount of power.

[0170] In another embodiment of an LED display illumination system as shown in FIG. 7G, the display 1432 is coupled to an angled diffuser 1436 at interface 1440. The linear array of LEDs are inserted at slot 1434 at one end of the diffuser and a reflective back surface 1438 is designed to evenly distribute light as it is directed through the interface. Similarly to the previous embodiment, the increased thickness and shortness of the body of the angled diffuser 1436 increases the coupling efficiency of the backlight system.

[0171] Illustrated in connection with FIG. 8A is a cellular telephone 200 having a magnified microdisplay in accordance with the invention. The display can be included in a base portion 210 of a "flip-phone" along with keypad 218 and microphone 220. The speaker 206, or the display or a second display as well as additional circuitry can be included in second portion 208 that rotates relative to the base 210. An antenna 204 can telescope out of the base for improved wireless reception. A battery is housed at 212. A lens 202 can be viewed by the user while holding the speaker to his or her ear thus enabling both viewing and voice transmission at the same time. The display can be turned on or off at switch 216 to save battery life when the display is not in use. The magnification can be adjusted at knob 214.

[0172] Additionally, a small camera 215 such as a charge coupled device (CCD), CMOS imaging sensor or other solid state imaging sensor can be mounted on a telescoping element to provide an imaging or video-conferencing capability. The camera can be pivoted so that the user can point and hold the camera in any selected direction. The image generated can be seen on the display and/or transmitted to a remote location, selected buttons or touch pad keys 218 can be used as a mouse control for the display.

[0173] Referring to FIGS. 8B and 8C, an alternative embodiment of a cellular telephone 222 having a magnified microdisplay in accordance with the invention is shown in

open and closed perspective views respectively. The cellular "flip-phone"222 has a base portion 224 and a flip portion 226. The base portion 224 has a keypad 228 a speaker 230, and an antenna 232. The base portion 224 may include an alphanumeric display for seeing the telephone number as it is being entered. The flip portion 226 pivots from the base portion 224 and includes a microphone 234, shown in hidden line in FIG. 8B. The microdisplay-is located in a module 238 which rotates relative to the flip portion 226. The module or pod 238 is flush with the flip portion 226 when in a stored position, such that the viewing port 240 is protected by the flip portion 226, as seen in FIG. 8C. When the "flip-phone" 222 is in use, the pod 238 is rotated generally 90 degrees from the stored closed position, such that a viewing port 240 is exposed and in the user's line of sight. The flip portion 226 spaces the microdisplay the proper distance from the base portion 224 to facility viewing.

[0174] Alternatively to the base portion 224 having an alphanumeric display, the telephone 222 can have software which can vary the image size on the microdisplay. The software can create low resolution image with large characters, such as illustrated in FIG. 8D. This resolution is primarily used when the microdisplay is viewed from 6 to 18 inches. When the user is inputting the telephone number on the keypad 228, the user's eye is typically that distance from the microdisplay as represented in FIG. 8E. The software can create high resolution small characters, and typically does, such as represented in FIG. 8F. This resolution is primarily implemented when the user's eye is 1 to 6 inches from the microdisplay, as represented in FIG. 8G, such as when the user is speaking on the phone. The software can automatically switch after the telephone number is dialed or a button can be pushed.

[0175] Referring to FIGS. 8H and 8I, an alternative embodiment of a cellular, cordless or standard telephone handset 1222 having a magnified microdisplay in accordance with the invention is shown. The telephone 1222 has a base portion 1224 and a display portion 1226 formed as an integral piece. The base portion 1224 can include a keypad 1228 or virtual keypad, a speaker 1230, and can include an antenna 1232. The base portion 1224 can include an alphanumeric display for seeing the telephone number as it is being entered. An alternative to the alphanumeric display is for the microdisplay to change resolution as described above or overlay enlarged numerical information on images being displayed.

[0176] The display portion 1226 of the telephone 1222 projects from the base portion 1224. The display portion 1226 includes the microdisplay with a lens 1236 that can extend substantially orthogonal to the plane of the base portion 1224. A microphone, located behind an opening 1234, can be generally located where the display portion 1226 and the base portion 1224 merge. The telephone 1222 can have a battery 1238 which is accessible from a palm receiving portion of the base 1224, as seen in FIG. 8I. This embodiment and other personal communication devices described in connection with other embodiments can utilize a high gain rear projection screen 1235 that can be positioned relative to the lens 1236 such that several people can observe the displayed image at one time. This option can include a high brightness switch for the backlight which can be manually actuated to draw more power to improve clarity of the image. The screen 1235 can be 1 and 4 inches in